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Objective

Figure: Aleksandr Lyapunov (June 6, 1857 -
November 3, 1918).

To build Lyapunov
functions associated with
epidemiological models
of transmission of
infectious diseases
transmitted by vectors in
the framework of the
optimization.



Vectors 

Chikungunya, Dengue fever, 
Rift Valley fever, Yellow 
fever, Zika, Malaria, and 
West Nile fever 

Arthropod vectors 

Mosquitoes Diseases 



Features of epidemiological models

1. Nonlinear differential
equations,

ẋ(t) = f(x(t))

2. ẋ(t) = input − output

dS

dt
= µN − βSI − µS

dI

dt
= βSI − β(µ+ γ)I

dR

dt
= γI − µR



Features of epidemiological models

1. Nonlinear differential
equations,
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Features of epidemiological models

3. Biological considerations

Diseases stages: susceptibles,
exposed, infected and recoved
Interactions between populations
involved in transmission process

Figure: Image taken from https://goo.gl/dWuQJp

Developmental stages
populations

Figure: Image taken from https://goo.gl/bVNa8l
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Stability Analysis

ẋ = f(x)
x∗ equilibrium point

Use the Jacobian Matrix Df(x∗)
to classify x∗ in:

Non-hyperbolic point (NH)

Hyperbolic point (H)

Based on the eigenvalues λ of Df(x∗)

Indirect Method of Lyapunov
(Linearization)

Hy
per

bol
ic poi

nts

Direct Method of Lyapunov

NH and H points



Direct method of Lyapunov

The following result was taken from (Khalil, 1996).

Theorem
Let x∗ = 0 be an equilibrium point of ẋ = f(x). Let V : D → R be
a continuously differentiable function on a neighborhood D of
x∗ = 0, such that

V (0) = 0 and V (x) > 0 in D − {0} (1)

V̇ (x) ≤ 0 in D (2)

then, x∗ = 0 is stable, where V̇ (x) = 〈∇V (x), f(x)〉.

Moreover, if

V̇ (x) < 0 in D − {0}

then x∗ = 0 is asymptotically stable.



Equilibrium 
 Points 

Determine Stability 
of the System 

 
 
 

Nonlinear System 
 
 

ẋ = f(x)

Application of  
Handelman’s Theorem 

Application of 
Sum of Squares Find Lyapunov Functions 

 
 
 

V (x) � 0

�hrV, f(x)i � 0





Theorem (Peet, 2009)

Consider the system ẋ(t) = f (x(t)) where Dαf ∈ C 2
1 (Rn) for all

α ∈ Zn. Suppose there exist constants µ, δ, r > 0 such that

||Ax0(t)||2 ≤ µ||x0||2e−δt

for all t ≥ 0 and ||x0||2 ≤ r .

Then, there exists a polynomial v : Rn → R and constants
α, β, γ, µ > 0 such that

α||x ||22 ≤ v(x)≤ β||x ||22

∇v(x)T f (x)≤ −γ||x ||22



As a sufficient condition, we demand from function f to be
n + 2-times continuously differentiable in order to satisfy the
conditions of the theorem.

As a consequence of this theorem, we have a corollary that
tells us that ordinary differential equations defined by
polynomials have Lyapunov polynomial functions.



In summary

Polynomial System

Lyapunov’s polynomial

ẋ = f(x)

function exists in a
bounded region

Exponentially stable
nonlinear system

is

then

Open Research
Problem

else



Result: SIR model is exponentially stable
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(a) R0 ≤ 1
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( 1, 0 ) ( s*, i* ) 

(b) R0 > 1

Figure: In (a) µ = 0.2, β = 0.5, γ = 0.8, R0 = 0.5, in (b) µ = 0.08,
β = 0.9, γ = 0.5, R0 = 1.55



Questions

1 How to construct these
polynomials?

2 What should be the degree
of these polynomials?

3 How can we verify that a
polynomial is positive?

Figure: David Hilbert (23 January
1862 - 14 February 1943)



Mathematical Problems

1. Cantor’s problem of the cardinal number of the continuum

2. The compatibility of the arithmetical axioms

3. The equality of two volumes of two tetrahedra of equal bases and
equal altitudes*

4. Problem of the straight line as the shortest distance between two
points

5. Lie’s concept of a continuous group of transformations without the
assumption of the differentiability of the functions defining the group

6. Mathematical treatment of the axioms of physics

7. Irrationality and transcendence of certain numbers*



Mathematical Problems

8. Problems of prime numbers

9. Proof of the most general law of reciprocity in any number field

10. Determination of the solvability of a diophantine equation*

11. Quadratic forms with any algebraic numerical coefficients

12. Extension of Kroneker’s theorem on abelian fields to any algebraic
realm of rationality

13. Impossibility of the solution of the general equation of the 7-th
degree by means of functions of only two arguments

14. Proof of the finiteness of certain complete systems of functions*

15. Rigorous foundation of Schubert’s enumerative calculus

16. Problem of the topology of algebraic curves and surfaces



Mathematical Problems 1

17. Express a nonnegative rational function as quotient of sums of
squares.*

18. Building up of space from congruent polyhedra*

19. Are the solutions of regular problems in the calculus of variations

always necessarily analytic?*

20. The general problem of boundary values*

21. Proof of the existence of linear differential equations having a

prescribed monodromic group*

22. Uniformization of analytic relations by means of automorphic

functions*

23. Further development of the methods of the calculus of variations

1The asterisk means that the problem is solved. Furthermore, the problem
that we want to solve is related to the problem number 17.



The following result was taken from (Kamyar, 2015).

Theorem (Artin’s theorem)

A polynomial f ∈ R[x ] satisfies f (x) ≥ 0 on Rn if and only if there
exist Sum of Squares (SOS) polynomials N and D 6= 0 such that

f (x) = N(x)
D(x) .



Semidefinite programming

Definition
A convex program problem is an optimization problem of the type

min g(x)

subject to x ∈ X

where g : Rn → R is a convex function, and the feasible set
X ⊆ Rn is a convex set.



Semidefinite programming

Definition
A semidefinite program (SDP) problem is a convex program
problem of the form

min cT x

s.t. A0 +
m∑
i=1

xiAi � 0

where x ∈ Rm is the decision variable, and c ∈ Rm and the m + 1
symmetric n × n matrices Ai are given data of the problem.



Finding a Lyapunov function using SDP

Consider the linear system

ẋ(t) = Ax(t)

Let a quadratic Lyapunov function

V (x) = xTPx (3)

where,

V̇ (x) = ẋTPx + xTPẋ

= xT (ATP + PA)x
(4)

From (3) and (4) we formulate the semidefinite programming
problem

P � 0

ATP + PA ≺ 0
(5)



Example

We solve (5) for the linear system

ẋ(t) =

[
−1 4
−1 −1

] [
x
y

]

P � 0 iff xTPx > 0. In fact,

[x y ]

[
p11 p12

p12 p22

] [
x
y

]
= p11x

2 + 2p12xy + p22y
2 > 0

We assume p12 = 0, thus xTPx = p11x
2 + p22y

2 > 0 iff
p11, p22 > 0.



ATP + PA ≺ 0 iff

[x y ]

[
−2p11 4p11 − p22

4p11 − p22 −2p22

] [
x
y

]
= −2p11x

2 + (8p11 − 2p22)xy − 2p22y
2 < 0

If we consider (8p11 − 2p22) = 0, then p22 = 4p11.

Thus P =

[
1 0
0 4

]
is a solution of (5) and V (x) = x2 + 4y2.



Sum of squares

Definition (Parrilo, 2000)

A multivariate polynomial p(x1, · · · , xn) := p(x) is a sum of
squares, if there exist polynomials q1(x), · · · , qm(x) such that

p(x) = q2
1(x) + q2

2(x) + · · ·+ q2
m(x)

Theorem (Parrilo, 2000, 2003)

A multivariate polynomial p(x) in n variables and of degree 2d is a
sum of squares if and only if there exists a positive semidefinite
matrix Q such that

p(x) = zTQz , (6)

where z is the vector of monomials of degree up to d

zT = [1, x1, x2, · · · , xn, x1x2, · · · , xdn ] (7)
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Application of sum of squares

Definition of Lyapunov
function

V (x) > 0

−〈∇V (x), f(x)〉 > 0

Relaxation of constraints

V (x) is a SOS

−〈∇V (x), f(x)〉 is a SOS

V (x)− ε
n∑

i=1

xqi is a SOS

−〈∇V (x), f(x)〉 − ε
n∑

i=1

xqi is a SOS

where ε is a fixed small positive number, and q is the degree of
Lyapunov function, V .



Searching a Lyapunov function

1 Define the degree of Lyapunov function, 2d .

2 Define the vector of monomials z of degree up to d .

3 Express the Lyapunov function as a quadratic form, i.e.
V (x) = zTQz .

4 If in the representation above Q is positive semidefinite, then
V (x) is also positive semidefinite.



Theorem
The following statements are equivalent:

1 The symmetric matrix A is positive semidefinite.

2 All eigenvalues of A are nonnegative.

3 All the principal minors of A are nonnegative.

4 There exists B such that A = BTB.

Theorem
Let A ∈ Rn×n a symmetric matrix. Then A is positive semidefinite
if and only if all the coefficients of its characteristic polynomial

p(λ) = det(λIn − A) = λn + pn−1λ
n−1 + · · ·+ p1λ+ p0 (8)

have alternating signs, i.e., (−1)n−ipi ≥ 0 for all i = 1, · · · , n.



Result: Lyapunov function for sir model

Consider the system sir normalized, i.e, s + i + r = 1.

ds

dt
= µ− βsi − µs

di

dt
= βsi − (µ+ γ)i

dr

dt
= γi − µr

ds

dt
= µ− βsi − µs

di

dt
= βsi − (µ+ γ)i

(9)

The system (9) has two equilibrium points:

The disease-free point, E0 = (1, 0), and

The endemic equilibrium point, E1 = (s∗, i∗), where s∗ = 1
R0

,

and i∗ = µ
β (R0 − 1), with R0 = β

µ+γ .



Moving the disease-free point E0 = (1, 0) to the origin, the system
(9) becomes:

ẋ1= µ− β(1 + x1)x2 − µ(1 + x1)

ẋ2= β(1 + x1)x2 − (µ+ γ)x2
(10)

where x1 = s − 1, and x2 = i .

We solve the optimization problem without objective function

V (x1, x2)− ε(x2
1 + x2

2 ) is a SOS

−〈∇V (x1, x2), (f (x1, x2))〉 − ε(x2
1 + x2

2 ) is a SOS



To look for a Lyapunov function, we will use the general expression
of a polynomial in x1 and x2 of degree two with neither constant
nor linear terms.

V (x1, x2) = [x1 x2]

[
q11 − ε q12

q12 q22 − ε

] [
x1

x2

]
= (q11 − ε)x2

1 + 2q12x1x2 + (q22 − ε)x2
2

Assume q12 = 0. The matrix Q =

[
q11 − ε 0

0 q22 − ε

]
is semidefinite positive iff q11 − ε ≥ 0, and q22 − ε ≥ 0.



For the derivative, we obtain after some algebra that we have
V̇ (x1, x2) = −wTRw , with the vector w = [x1 x2 x1x2].

The expression for the matrix R is

2(q11 − ε)µ (q11 − ε)β (q11 − ε)β
(q11 − ε)β 2(q22 − ε)(µ+ γ)(1− R0) −(q22 − ε)β
(q11 − ε)β −(q22 − ε)β 0



here ε is a fixed small positive number



In general, we found

V (s, i) = q11(s − 1)2 + q22i
2

where

q11 = ε and q22 =
ε(µ+ γ)

(γ + 1)

with 0.06 ≤ µ ≤ 0.3, 0 ≤ β ≤ 1, 0.5 ≤ γ ≤ 1.75 and ε > 0

SIMULATIONS



V (s, i) = q11(s − 1)2 + q22i
2

Figure: µ = 0.2, β = 0.5, γ = 0.8, R0 = 0.5, q11 = 1.201× 10−4, and
q22 = 5.666× 10−5



Dengue transmission model

dme

dt
= bβmhi (1−me −mi )− (θm + µm)me

dmi

dt
= θmme − µmmi

dhs
dt

= µh − bβhmihs − µhhs
dhe
dt

= bβhmihs − (θh + µh)he

dhi
dt

= θhhe − (γh + µh)hi

The disease-free point, P0 = (0, 0, 1, 0, 0).



Moving the disease-free point P0 to the origin:

dx1

dt
= bβmx5(1− x1 − x2)− (θm + µm)x1

dx2

dt
= θmx1 − µmx2

dx3

dt
= µh − bβhx2(x3 + 1)− µh(x3 + 1)

dx4

dt
= bβhx2(x3 + 1)− (θh + µh)x4

dx5

dt
= θhx4 − (γh + µh)x5



In general, we found

V (me ,mi , hs , he , hi ) = q11m
2
e +q22m

2
i +q33(hs−1)2 +q44h

2
e +q55h

2
i

where

q11=ε

q22=
λ√

(θm + µm)
+ ε

q33≤
4µhµm
b2β2

h

(q22 − ε) + ε

q44≤
4µm(θh + µh)

b2β2
h

(q22 − ε) + ε

q55≤
4(θh + µh)(γh + µh)

θ2
h

(q44 − ε) + ε

with ε > 0



Method of sum of squares

Equilibrium 
 Points 

 
 
 

Nonlinear System 
 
 

ẋ = f(x)

Express the Lyapunov function 
and its orbital derivative 

as a quadratic form 

Define the degree of 
 Lyapunov function (even) 

Define the vector of  
monomials z 

Solve the SDP 
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Polytopes



Theorem (Handelman’s theorem)

Given wi ∈ Rn and ui ∈ R, define the polytope

ΓK := {x ∈ Rn . wT
i x + ui ≥ 0, i = 1, ...,K}. (11)

If a polynomial f (x) > 0 on ΓK , then there exist bα ≥ 0, α ∈ NK

such that for some d ∈ N,

f (x) =
∑

α∈Nn

α1+···+αK≤d

bα(wT
1 x + u1)α1 · · · (wT

K x + uK )αK . (12)

This theorem was taken from (Kamyar, 2014).



Application of Handelman’s Theorem

γ∗ = max
γ,cβ∈R

γ

subject to
∑
α∈Ed

cβx
β − γxT x 0

0 −〈∇ ∑
α∈Ed

cβx
β, f (x)〉 − γxT x 0

 ≥ 0

for all x ∈ D.

(13)

Conditions (1) and (2) of Direct method of Lyapunov hold if and
only if there exist d ∈ N such that γ∗ > 0.



Application of Handelman’s theorem

How can we apply Handelman’s theorem to solve (13)?



Application of Handelman’s theorem
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The equation (13) becomes a new linear program problem:

max
γ∈R,bi∈RNi ,ci∈RMi

γ

subject to

b1 ≥ 0 for i = 1, · · · , L
c1 ≤ 0 for i = 1, · · · , L

Ri (bi , d) = 0 for i = 1, · · · , L
Hi (bi , d) ≥ γ1 for i = 1, · · · , L

Hi (ci , d + df − 1) ≤ −γ1 for i = 1, · · · , L
Gi (bi , d) = Fi (ci , d + df − 1) for i = 1, · · · , L

Ji ,k(bi , d) = Jj ,l(bi , d) for i , j = 1, · · · , L, i 6= j ,

k , l ∈ {1, · · · ,mi}

(14)



where

Ri (bi , d) is the vector of coefficients of monomials of Vi (x)
which are nonzero at the origin.

Hi (bi , d) is the vector of coefficients of square terms of Vi (x).

Gi (bi , d) is the vector of coefficients of 〈∇Vi (x), f (x)〉.
Fi (bi , d) is the vector of coefficients of Vi (x).

Ji ,k(bi , d) is the vector of coefficients of (12), such that
αK = 0.

This result was taken from (Kamyar, 2014).



Application of Handelman’s theorem



Results

We found robust Lyapunov functions to test the asymptotic
stability of disease-free equilibrium points in some models
simulating the transmission of mosquito-borne infectious diseases.
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