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Objective

Figure: Aedes aegypti. Image taken from
https://goo.gl/tneEZY

Determine the must
relevant components of
the mathematical models
based on Ordinary
Differential Equations
(ODS) in order to
understand the
transmission of a
infectious disease.

https://goo.gl/tneEZY


Epidemiological models

Figure: McKendrick (1876 - 1943) and Kermack (1898 - 1970).

Image taken from https://goo.gl/GNOcAF

Figure: Flow chart for the SIR model3
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Threshold theorem (basic reproductive number, R0)

R0 for SIR model

R0 =
βS0

γ

Figure: Basic reproductive number for some infectious
disease. Image taken from https://goo.gl/vDc70u

https://goo.gl/vDc70u
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Example: Dengue model, Bello’s case

dA

dt
= δ
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Example: Dengue model, Bello’s case

R0 =
b2βmβhθhθm

(θm + µm)(γh + µh)(θh + µh)µmM
· f γm
µm

δMC

(δM + C (γm + µa))

=
b2βmβhθhθm

(θm + µm)(γh + µh)(θh + µh)µm
· M

∗
s

M

The Basic Reproductive Number (R0) of the epidemic occurred in
Bello in 2010 was between 1.5 and 2.7.
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Epidemiological data

The parameters used in the model, their biological descriptions,
and their ranges of values.

Param. Meaning V. / day V. / week

b Biting rate [0, 1] [0, 4]

δ Per capita oviposition rate [8, 24] [55, 165]

γm Transition rate from the aquatic phase to the adult phase [0.125, 0.2] [0.875, 1.4]

µa Mortality rate in the aquatic phase [0.001, 0.5] [0.007, 0.3]

µm Mortality rate in the adult phase [0.008, 0.03] [0.06, 0.20]

f Fraction of female mosquitoes hatched from all eggs [0.42, 0.55] [0.42, 0.55]

C Carrying capacity of the environment [6400, 95000] [6400, 95000]

µh Birth and death rate of the human population 0.00006 0.0004

βh Transmission probability from mosquito to human [0, 1] [0, 1]

βm Transmission probability from mosquito to human [0, 1] [0, 1]

θm Transition rate from exposed to infectious mosquitoes [0.08, 0.13] [0.58, 0.88]

θh Transition rate from exposed to infectious humans [0.1, 0.25] [0.7, 1.75]

γh Recovery rate [0.07, 0.25] [0.5, 1.75]



Initial conditions

The initial conditions used in the model, their descriptions, and
their ranges of values.

Initial condition Meaning Range

A(0) Initial condition for the aquatic phase [5755, 17265]

Ms(0) Initial condition for susceptible mosquitoes [0, 1200000]

Me(0) Initial condition for exposed mosquitoes [0, 100]

Mi (0) Initial condition for infectious mosquitoes [0, 100]

Hs(0) Initial condition for susceptible humans [244402, 321734]

He(0) Initial condition for exposed humans [18, 72]

Hi (0) Initial condition for infectious humans [6, 24]

Hr (0) Initial condition for recovered humans [81405, 158809]



The model fitted to the real biological data

Param. Value

δ 65

γm 1.4

µa 0.1156

b 4

µm 0.12

θm 0.58

f 0.5

θh 0.7

C 10000

γh 1

βm 0.6

βh 0.15

µh 0.0004

A(0) 9000

Ms(0) 1199976

Me(0) 18

Mi (0) 6

Hs(0) 321710

He(0) 18

Hi (0) 6

Hr (0) 81501



Stability analysis

Figure: Henri Poincaré (April 29, 1854 - July 17, 1912). Image taken

from https://goo.gl/0I0qLJ

Figure: Aleksandr Lyapunov (June 6, 1857 - November 3, 1918).

Image taken from https://goo.gl/dLNfwW

Definition
A point x∗ is called an
equilibrium point of
ẋ = f(x), if f(x∗) = 0.

https://goo.gl/0I0qLJ
https://goo.gl/dLNfwW
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Definitions: stable, unstable and asymptotically stable

1

x∗

ε
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δ

Figure: The black line shows the definition of stable point. The green
line shows the definition of unstable point. The red line represents a
definition of asymptotically stable point.



Definitions: stable, unstable and asymptotically stable

Definition
The equilibrium point x∗ is

stable if, for each ε > 0, there is a δ = δ(ε) > 0 such that,

||x0 − x∗|| < δ ⇒ ||ϕ(t, x0)− x∗|| < ε, ∀t ≥ 0

unstable, if not stable

asymptotically stable, if it is stable, and δ can be chosen such
that

||x0 − x∗|| < δ ⇒ lim
t→∞

||ϕ(t, x0)− x∗|| = 0



Stability diagram

Stability Analysis

ẋ = f(x)
x∗ equilibrium point

Use the Jacobian Matrix Df(x∗)
to classify x∗ in:

Non-hyperbolic point (NH)

Hyperbolic point (H)

Based on the eigenvalues λ of Df(x∗)

Indirect Method of Lyapunov
(Linearization)

Hy
per

bol
ic poi

nts

Direct Method of Lyapunov

NH and H points



Indirect method of Lyapunov

The following results were taken from (Hale and Koçak, 2012).

Theorem
Let f be a C 1 function. If all eigenvalues of the Jacobian matrix
Df(x∗) have negative real parts, then the equilibrium point x∗ of
ẋ = f(x) is asymptotically stable.

Theorem
Let f be a C 1 function. If at least one of the eigenvalues of the
Jacobian matrix Df(x∗) has positive real part, then the equilibrium
point x∗ of ẋ = f(x) is unstable.
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Indirect method of Lyapunov

Theorem
(Grobman (1959) - Hartman(1960)) If x∗ is a hyperbolic
equilibrium point of nonlinear system ẋ = f(x), then there is a
neighborhood of x∗ in which f is topologically equivalent to the
linear vector field ẋ = Df(x∗)x.



Direct method of Lyapunov

The following result was taken from (Khalil, 1996).

Theorem
Let x∗ = 0 be an equilibrium point of ẋ = f(x). Let V : D → R be
a continuously differentiable function on a neighborhood D of
x∗ = 0, such that

V (0) = 0 and V (x) > 0 in D − {0}

V̇ (x) ≤ 0 in D

then, x∗ = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0}

then x∗ = 0 is asymptotically stable.



Exponentially stable

Definition
The equilibrium point x∗ = 0 of ẋ = f(x) is said to be
exponentially stable if

‖x(t)‖ ≤ k‖x(0)‖e−λt , ∀t ≥ 0

k ≥ 1, λ > 0, for all ‖x(0)‖ < c .

Definition
When all eigenvalues λ’s of a matrix A satisfy Re(λ) < 0, A is
called a Hurwitz matrix.

Theorem
The equilibrium point x∗ = 0 of ẋ = f(x) is exponentially stable if
and only if the linearization of f(x) at the origin is a Hurwitz
matrix.
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How to find a Lyapunov function?

Polynomial System

Lyapunov’s polynomial

ẋ = f(x)

function exists in a
bounded region

Exponentially stable
nonlinear system

is

then

Open Research
Problem

else

For a deeper discussion of when a Lyapunov’s polynomial function
exists in a bounded region we refer the reader to (Peet, 2009).



Counterexample

The system (1) does not admit a polynomial Lyapunov function of
any degree.

ẋ = −x + xy

ẏ = −y
(1)

See (Ahmadi et al., 2011) for details of this result.



How to find a Lyapunov function?

Definition of Lyapunov function

V (x) ≥ 0

V̇ =
n∑

i=1

∂V

∂xi
ẋi = 〈∂V

∂xi
, ẋi 〉

V̇ ≤ 0

Relaxation of constraints

V (x) is a Sum of Squares (SOS)

−V̇ (x) is a Sum of Squares (SOS)



Can we apply this results to epidemiological models?

Epidemiological Models

• Disease free point

• Endemic equilibrium point

R0 depends on the
parameters and the initial
conditions of the model

SIR Model
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