Stability Analysis Methodology for Epidemiological Models

Paola Lizarralde-Bejarano

Supervisor: María Eugenia Puerta Co-supervisor: Sair Arboleda-Sanchéz EAFIT University Medellín, Colombia

November 30, 2016

1 Preliminar

2 Stability

3 Bibliography

Objective

Figure: Aedes aegypti. Image taken from https://goo.gl/tneEZY

Determine the must relevant components of the mathematical models based on Ordinary Differential Equations (ODS) in order to understand the transmission of a infectious disease.

Figure: McKendrick (1876 - 1943) and Kermack (1898 - 1970).

 $Image\ taken\ from\ https://goo.gl/GNOcAF$

Figure: McKendrick (1876 - 1943) and Kermack (1898 - 1970).

 $Image\ taken\ from\ https://goo.gl/GNOcAF$

Figure: Flow chart for the SIR model3

Figure: McKendrick (1876 - 1943) and Kermack (1898 - 1970).

Image taken from https://goo.gl/GNOcAF

$$S \xrightarrow{\beta} I \xrightarrow{\gamma} R$$

Figure: Flow chart for the SIR model3

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Figure: McKendrick (1876 - 1943) and Kermack (1898 - 1970).

 $Image\ taken\ from\ https://goo.gl/GNOcAF$

$$S \xrightarrow{\beta} I \xrightarrow{\gamma} R$$

Figure: Flow chart for the SIR model3

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

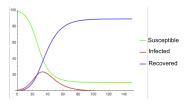


Figure: SIR Model

Threshold theorem (basic reproductive number, R_0)

 R_0 for SIR model

$$R_0 = \frac{\beta S_0}{\gamma}$$

Threshold theorem (basic reproductive number, R_0)

R_0 for SIR model

$$R_0 = \frac{\beta S_0}{\gamma}$$

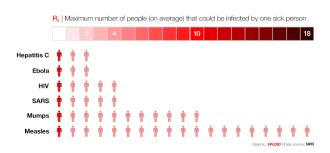


Figure: Basic reproductive number for some infectious disease. Image taken from https://goo.gl/vDc70u

Example: Dengue model, Bello's case

$$\frac{dA}{dt} = \delta \left(1 - \frac{A}{C} \right) M - (\gamma_m + \mu_a) A$$

$$\frac{dM_s}{dt} = f \gamma_m A - b \beta_m \frac{H_i}{H} M_s - \mu_m M_s$$

$$\frac{dM_e}{dt} = b \beta_m \frac{H_i}{H} M_s - (\theta_m + \mu_m) M_e$$

$$\frac{dM_i}{dt} = \theta_m M_e - \mu_m M_i$$

$$\frac{dH_s}{dt} = \mu_h H - b \beta_h \frac{M_i}{M} H_s - \mu_h H_s$$

$$\frac{dH_e}{dt} = b \beta_h \frac{M_i}{M} H_s - (\theta_h + \mu_h) H_e$$

$$\frac{dH_e}{dt} = \theta_h H_e - (\gamma_h + \mu_h) H_i$$

$$\frac{dH_r}{dt} = \gamma_h H_i - \mu_h H_r$$

Example: Dengue model, Bello's case

$$R_{0} = \frac{b^{2}\beta_{m}\beta_{h}\theta_{h}\theta_{m}}{(\theta_{m} + \mu_{m})(\gamma_{h} + \mu_{h})(\theta_{h} + \mu_{h})\mu_{m}M} \cdot \frac{f\gamma_{m}}{\mu_{m}} \frac{\delta MC}{(\delta M + C(\gamma_{m} + \mu_{a}))}$$
$$= \frac{b^{2}\beta_{m}\beta_{h}\theta_{h}\theta_{m}}{(\theta_{m} + \mu_{m})(\gamma_{h} + \mu_{h})(\theta_{h} + \mu_{h})\mu_{m}} \cdot \frac{M_{s}^{*}}{M}$$

Example: Dengue model, Bello's case

$$R_{0} = \frac{b^{2}\beta_{m}\beta_{h}\theta_{h}\theta_{m}}{(\theta_{m} + \mu_{m})(\gamma_{h} + \mu_{h})(\theta_{h} + \mu_{h})\mu_{m}M} \cdot \frac{f\gamma_{m}}{\mu_{m}} \frac{\delta MC}{(\delta M + C(\gamma_{m} + \mu_{a}))}$$
$$= \frac{b^{2}\beta_{m}\beta_{h}\theta_{h}\theta_{m}}{(\theta_{m} + \mu_{m})(\gamma_{h} + \mu_{h})(\theta_{h} + \mu_{h})\mu_{m}} \cdot \frac{M_{s}^{*}}{M}$$

The Basic Reproductive Number (R_0) of the epidemic occurred in Bello in 2010 was between 1.5 and 2.7.

Epidemiological data

The parameters used in the model, their biological descriptions, and their ranges of values.

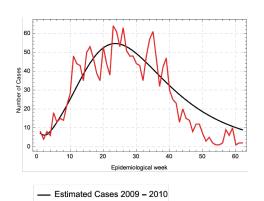
Param.	Meaning	V. / day	V. / week
Ь	Biting rate	[0, 1]	[0, 4]
δ	Per capita oviposition rate	[8, 24]	[55, 165]
γ_m	Transition rate from the aquatic phase to the adult phase	[0.125, 0.2]	[0.875, 1.4]
μ_a	Mortality rate in the aquatic phase	[0.001, 0.5]	[0.007, 0.3]
μ_{m}	Mortality rate in the adult phase	[0.008, 0.03]	[0.06, 0.20]
f	Fraction of female mosquitoes hatched from all eggs	[0.42, 0.55]	[0.42, 0.55]
С	Carrying capacity of the environment	[6400, 95000]	[6400, 95000]
μ_h	Birth and death rate of the human population	0.00006	0.0004
β_h	Transmission probability from mosquito to human	[0, 1]	[0, 1]
β_m	Transmission probability from mosquito to human	[0, 1]	[0, 1]
θ_m	Transition rate from exposed to infectious mosquitoes	[0.08, 0.13]	[0.58, 0.88]
θ_h	Transition rate from exposed to infectious humans	[0.1, 0.25]	[0.7, 1.75]
γ_h	Recovery rate	[0.07, 0.25]	[0.5, 1.75]

Initial conditions

The initial conditions used in the model, their descriptions, and their ranges of values.

Initial condition	Meaning	Range
A(0)	Initial condition for the aquatic phase	[5755, 17265]
$M_s(0)$	Initial condition for susceptible mosquitoes	[0, 1200000]
$M_e(0)$	Initial condition for exposed mosquitoes	[0, 100]
$M_i(0)$	Initial condition for infectious mosquitoes	[0, 100]
$H_s(0)$	Initial condition for susceptible humans	[244402, 321734]
$H_e(0)$	Initial condition for exposed humans	[18, 72]
$H_i(0)$	Initial condition for infectious humans	[6, 24]
$H_r(0)$	Initial condition for recovered humans	[81405, 158809]

The model fitted to the real biological data



Epidemic 2009 - 2010

Param.	Value
δ	65
γ_m	1.4
μ_{a}	0.1156
Ь	4
μ_{m}	0.12
θ_m	0.58
f	0.5
θ_h	0.7
С	10000
γ_h	1
β_m	0.6
β_h	0.15
μ_h	0.0004
A(0)	9000
$M_s(0)$	1199976
$M_e(0)$	18
$M_i(0)$	6
$H_s(0)$	321710
$H_e(0)$	18
$H_i(0)$	6
$H_r(0)$	81501

Stability analysis

Figure: Henri Poincaré (April 29, 1854 - July 17, 1912). Image taken from https://goo.gl/010qLJ

Figure: Aleksandr Lyapunov (June 6, 1857 - November 3, 1918). Image taken from https://goo.gl/dLNfwW

Stability analysis

Figure: Henri Poincaré (April 29, 1854 - July 17, 1912). Image taken from https://goo.gl/010qLJ

Figure: Aleksandr Lyapunov (June 6, 1857 - November 3, 1918). Image taken from https://goo.gl/dLNfwW

Definition

A point \mathbf{x}^* is called an equilibrium point of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, if $\mathbf{f}(\mathbf{x}^*) = 0$.

Definitions: stable, unstable and asymptotically stable

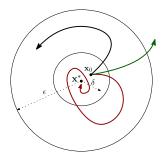


Figure: The **black** line shows the definition of *stable* point. The **green** line shows the definition of *unstable* point. The **red** line represents a definition of *asymptotically stable* point.

Definitions: stable, unstable and asymptotically stable

Definition

The equilibrium point \mathbf{x}^* is

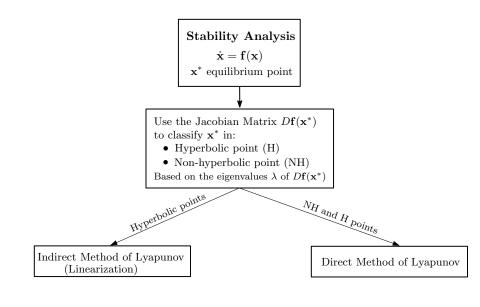
■ stable if, for each $\epsilon > 0$, there is a $\delta = \delta(\epsilon) > 0$ such that,

$$||\mathbf{x}^0 - \mathbf{x}^*|| < \delta \Rightarrow ||\varphi(t, \mathbf{x}^0) - \mathbf{x}^*|| < \epsilon, \ \forall t \ge 0$$

- unstable, if not stable
- lacksquare asymptotically stable, if it is stable, and δ can be chosen such that

$$||\mathbf{x}^0 - \mathbf{x}^*|| < \delta \Rightarrow \lim_{t \to \infty} ||\varphi(t, \mathbf{x}^0) - \mathbf{x}^*|| = 0$$

Stability diagram



Indirect method of Lyapunov

The following results were taken from (Hale and Koçak, 2012).

Theorem

Let \mathbf{f} be a C^1 function. If all eigenvalues of the Jacobian matrix $D\mathbf{f}(\mathbf{x}^*)$ have negative real parts, then the equilibrium point \mathbf{x}^* of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is asymptotically stable.

Indirect method of Lyapunov

The following results were taken from (Hale and Koçak, 2012).

Theorem

Let \mathbf{f} be a C^1 function. If all eigenvalues of the Jacobian matrix $D\mathbf{f}(\mathbf{x}^*)$ have negative real parts, then the equilibrium point \mathbf{x}^* of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is asymptotically stable.

Theorem

Let \mathbf{f} be a C^1 function. If at least one of the eigenvalues of the Jacobian matrix $D\mathbf{f}(\mathbf{x}^*)$ has positive real part, then the equilibrium point \mathbf{x}^* of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is unstable.

Indirect method of Lyapunov

Theorem

(Grobman (1959) - Hartman(1960)) If \mathbf{x}^* is a hyperbolic equilibrium point of nonlinear system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, then there is a neighborhood of \mathbf{x}^* in which \mathbf{f} is topologically equivalent to the linear vector field $\dot{\mathbf{x}} = D\mathbf{f}(\mathbf{x}^*)\mathbf{x}$.

Direct method of Lyapunov

The following result was taken from (Khalil, 1996).

Theorem

Let $\mathbf{x}^* = \mathbf{0}$ be an equilibrium point of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$. Let $V: D \to \mathbb{R}$ be a continuously differentiable function on a neighborhood D of $\mathbf{x}^* = \mathbf{0}$, such that

$$V(\mathbf{0}) = 0$$
 and $V(\mathbf{x}) > 0$ in $D - \{\mathbf{0}\}$

$$\dot{V}(\mathbf{x}) \leq 0$$
 in D

then, $\mathbf{x}^* = \mathbf{0}$ is stable. Moreover, if

$$\dot{V}(\mathbf{x}) < 0 \text{ in } D - \{\mathbf{0}\}\$$

then $\mathbf{x}^* = \mathbf{0}$ is asymptotically stable.

Exponentially stable

Definition

The equilibrium point $\mathbf{x}^* = \mathbf{0}$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is said to be exponentially stable if

$$\|\mathbf{x}(t)\| \le k \|\mathbf{x}(0)\| e^{-\lambda t}, \ \forall t \ge 0$$

$$k \ge 1$$
, $\lambda > 0$, for all $\|\mathbf{x}(0)\| < c$.

Exponentially stable

Definition

The equilibrium point $\mathbf{x}^* = \mathbf{0}$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is said to be exponentially stable if

$$\|\mathbf{x}(t)\| \le k \|\mathbf{x}(0)\| e^{-\lambda t}, \ \forall t \ge 0$$

$$k \ge 1$$
, $\lambda > 0$, for all $\|\mathbf{x}(0)\| < c$.

Definition

When all eigenvalues λ 's of a matrix A satisfy $Re(\lambda) < 0$, A is called a Hurwitz matrix.

Exponentially stable

Definition

The equilibrium point $\mathbf{x}^* = \mathbf{0}$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is said to be exponentially stable if

$$\|\mathbf{x}(t)\| \le k \|\mathbf{x}(0)\| e^{-\lambda t}, \ \forall t \ge 0$$

$$k \ge 1$$
, $\lambda > 0$, for all $\|\mathbf{x}(0)\| < c$.

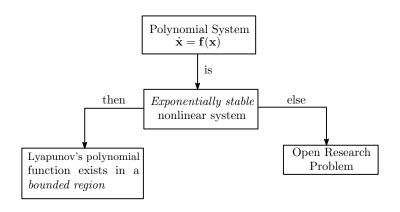
Definition

When all eigenvalues λ 's of a matrix A satisfy $Re(\lambda) < 0$, A is called a Hurwitz matrix.

Theorem

The equilibrium point $\mathbf{x}^* = 0$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is exponentially stable if and only if the linearization of $\mathbf{f}(\mathbf{x})$ at the origin is a Hurwitz matrix.

How to find a Lyapunov function?



For a deeper discussion of when a Lyapunov's polynomial function exists in a bounded region we refer the reader to (Peet, 2009).

Counterexample

The system (1) does not admit a polynomial Lyapunov function of any degree.

$$\dot{x} = -x + xy
\dot{y} = -y$$
(1)

See (Ahmadi et al., 2011) for details of this result.

How to find a Lyapunov function?

Definition of Lyapunov function

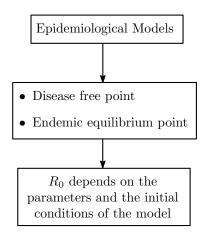
$$V(x) \ge 0$$

$$\dot{V} = \sum_{i=1}^{n} \frac{\partial V}{\partial x_{i}} \dot{x}_{i} = \langle \frac{\partial V}{\partial x_{i}}, \dot{x}_{i} \rangle$$

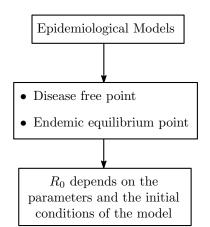
$$\dot{V} \le 0$$

$$V(x)$$
 is a Sum of Squares (SOS)
 $-\dot{V}(x)$ is a Sum of Squares (SOS)

Can we apply this results to epidemiological models?



Can we apply this results to epidemiological models?



SIR Model

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma$$

$$\frac{dR}{dt} = \gamma I$$

Can we apply this results to epidemiological models?

$$\frac{dA}{dt} = \delta \left(1 - \frac{A}{C} \right) M - (\gamma_m + \mu_a) A$$

$$\frac{dM_s}{dt} = f \gamma_m A - b \beta_m \frac{H_i}{H} M_s - \mu_m M_s$$

$$\frac{dM_e}{dt} = b \beta_m \frac{H_i}{H} M_s - (\theta_m + \mu_m) M_e$$

$$\frac{dM_i}{dt} = \theta_m M_e - \mu_m M_i$$

$$\frac{dH_s}{dt} = \mu_h H - b \beta_h \frac{M_i}{M} H_s - \mu_h H_s$$

$$\frac{dH_e}{dt} = b \beta_h \frac{M_i}{M} H_s - (\theta_h + \mu_h) H_e$$

$$\frac{dH_e}{dt} = \theta_h H_e - (\gamma_h + \mu_h) H_i$$

$$\frac{dH_r}{dt} = \gamma_h H_i - \mu_h H_r$$

Bibliography

- Khalil, H. K. (1996). Nonlinear systems. Prentice Hall.
- Hale, J. K., Koçak, H. (2012). *Dynamics and Bifurcations*. Springer Verlag.
- Peet, M. M. (2009). Exponentially Stable Nonlinear Systems have Polynomial Lyapunov Functions on Bounded Regions. IEEE Transactions on Automatic Control, 54(5), pp. 979-987.
- Ahmadi, A. A., Krstic, M., Parrilo, P. A. (2011). A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function. In Proceedings of the 50th IEEE Conference on Decision and Control.