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Introduction

I The earth is at least a visco elastic medium, in which absorption losses give rise
to attenuation and dispersion effects.

I The elastic wave equation is framed in terms of tensor operators acting on
vector quantities.

I ...it is also true that a proper treatment of anisotropy fundamentally demands an
elastic viewpoint, even when only P-waves (quasi-P waves) are contemplated.

I ....different representations for the same physical law can lead to different
computational techniques in solving the same problem, which can produce
different and new numerical results, so this new but accurate representation
should lead us to new results and descriptions of the phenomena.
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Wave Propagation in Continuum Media

I Hook‘s law

σij =
∑
k,l

Cijkl εkl

where

σij : is the strain tensor,

Cijkl : is the stiffnes tensor,

εkl : is the stress tensor.

I Cauchy’s equations of motion

I Wave equation for P-waves in homogeneous and isotropic media

I Wave equation for S-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

I Hook‘s law

I Cauchy’s equations of motion
From the balance of momentum one gets

ρ(~x)
∂2~ui

∂t2
=
∑
j

∂

∂xj
σij

For an Isotropic media

σij = λδij
∑
k

εkk + 2µεij

I Wave equation for P-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

I Hook‘s law

I Cauchy’s equations of motion
From the balance of momentum one gets

ρ(~x)
∂2~ui

∂t2
=
∑
j

∂

∂xj
σij

then

ρ(~x)
∂2~u

∂t2
= (λ+ µ)[5(5 · ~u)] + µ52 ~u

I Wave equation for P-waves in homogeneous and isotropic media

I Wave equation for S-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

I Hook‘s law

I Cauchy’s equations of motion
From the balance of momentum one gets

ρ(~x)
∂2~ui

∂t2
=
∑
j

∂

∂xj
σij

In general curvilinear coordinates

52~u = 5(5 · ~u)−5× (5× ~u)

and defining

ϕ = 5 · ~u
ψ = 5× ~u

I Wave equation for P-waves in homogeneous and isotropic media

I Wave equation for S-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

I Hook‘s law

I Cauchy’s equations of motion
From the balance of momentum one gets

ρ(~x)
∂2~ui

∂t2
=
∑
j

∂

∂xj
σij

we get

ρ(~x)
∂2~u

∂t2
= (λ+ 2µ)5 ϕ− µ5×ψ

I Wave equation for P-waves in homogeneous and isotropic media

I Wave equation for S-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

I Hook‘s law

I Cauchy’s equations of motion

I Wave equation for P-waves in homogeneous and isotropic media

52ϕ−
1

v2
p

∂2ϕ

∂t2
= 0

where

vp =

(
λ+ 2µ

ρ

) 1
2

I Wave equation for S-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

I Hook‘s law

I Cauchy’s equations of motion

I Wave equation for P-waves in homogeneous and isotropic media

I Wave equation for S-waves in homogeneous and isotropic media

52ψ −
1

v2
s

∂2ψ

∂t2
= 0

where

vs =

(
µ

ρ

) 1
2
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On Wave equation

I In one dimension (1-D)

I In two dimensions (2-D)
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On Wave equation

Consider the IVP

52~u −
1

v2

∂2~u

∂t2
= 0

~u(~x , 0) = γ(~x)

∂~u

∂t
|t=0 = η(~x)

I In one dimension (1-D)

I In two dimensions (2-D)
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On Wave equation

I In one dimension (1-D)

u(x , t) =
1

2

[
γ(x + vt) + γ(x − vt) +

1

v

∫ x+vt

x−vt
η(s)ds

]
where

γ(x) = f (x) + g(x)

η(x) = v [f ′(x) + g ′(x)]

for some f , g ∈ C2(Ω)

I In two dimensions (2-D)
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On Wave equation

I In one dimension (1-D)

I In two dimensions (2-D)

~u(~x , t) =
d

dt

[
4π2

v

∫∫
D(~x,vt)

γ(s1, s2)√
(vt)2 − [(s1 − x1)2 + (s2 − x2)2]

ds1ds2

]

+
4π2

v

∫∫
D(~x,vt)

η(s1, s2)√
(vt)2 − [(s1 − x1)2 + (s2 − x2)2]

ds1ds2

RWE



Elasticity Theory

I

I

I

I

I

RWE



Elasticity Theory

I A configuration on B is a smooth, orientation preserving and invertible mapping

Φ : B → ∫

The set of all configurations of B is denoted C
I

I

I

I

RWE



Elasticity Theory

I A configuration on B is a smooth, orientation preserving and invertible mapping

Φ : B → ∫

The set of all configurations of B is denoted C
I A motion of B is a curve on C

t → Φt ∈ C

I

I

I

RWE



Elasticity Theory

I A configuration on B is a smooth, orientation preserving and invertible mapping

Φ : B → ∫

The set of all configurations of B is denoted C
I A motion of B is a curve on C

t → Φt ∈ C

I We denote motions as Φ(X , t), where X ∈ B and x = Φ(X ) ∈ S
I

I

RWE



Elasticity Theory

I A configuration on B is a smooth, orientation preserving and invertible mapping

Φ : B → ∫

The set of all configurations of B is denoted C
I A motion of B is a curve on C

t → Φt ∈ C

I We denote motions as Φ(X , t), where X ∈ B and x = Φ(X ) ∈ S
I The material velocity and acelerations are defined as (for X fixed)

Vt(X ) =
∂

∂t
Φ(X , t)

At(X ) =
∂

∂t
Vt(X )

I

RWE



Elasticity Theory

I A configuration on B is a smooth, orientation preserving and invertible mapping

Φ : B → ∫

The set of all configurations of B is denoted C
I A motion of B is a curve on C

t → Φt ∈ C

I We denote motions as Φ(X , t), where X ∈ B and x = Φ(X ) ∈ S
I The material velocity and acelerations are defined as (for X fixed)

Vt(X ) =
∂

∂t
Φ(X , t)

At(X ) =
∂

∂t
Vt(X )

I The spatial velocity and acelerations are defined as (for t fixed)

vt := Vt ◦ Φ−1

at := At ◦ Φ−1

RWE
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Elasticity Theory

I The deformation gradient, is given by

F : TB → TS
F (X ,W ) = (Φ(X ),DΦ(x) ·W )

I

I

I

I
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Elasticity Theory

I

I The right Cauchy-Green tensor is given by

C : TXB → TXB

C(X ,W ) =
(
X ,DΦ(X )TDΦ(X ) ·W

)
C(X ) = FT (X )F (X )

I

I

I
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Elasticity Theory

I

I The right Cauchy-Green tensor is given by

C : TXB → TXB

C(X ,W ) =
(
X ,DΦ(X )TDΦ(X ) ·W

)
C(X ) = FT (X )F (X )

I some properties of C

1. C is Symmetric
2. C is semi-positive definite
3. If every F is one-to one, then C is positive definite and

invertible.
I

I
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Elasticity Theory

I

I The right Cauchy-Green tensor is given by

C : TXB → TXB

C(X ,W ) =
(
X ,DΦ(X )TDΦ(X ) ·W

)
C(X ) = FT (X )F (X )

I

I The left Cauchy-Green tensor is given by

b : TxΦ(B) → TxΦ(B)

b(x) = F (X )FT (X )
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Elasticity Theory

I

I The right Cauchy-Green tensor is given by

C : TXB → TXB

C(X ,W ) =
(
X ,DΦ(X )TDΦ(X ) ·W

)
C(X ) = FT (X )F (X )

I

I The left Cauchy-Green tensor is given by

b : TxΦ(B) → TxΦ(B)

b(x) = F (X )FT (X )

I some properties of b

1. b is Symmetric
2. b is positive definite
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Elasticity Theory

I Consider the symmetric, positive definite, linear transformations U, V such that

U2 = C

V 2 = b

I

I

RWE



Elasticity Theory

I Consider the symmetric, positive definite, linear transformations U, V such that

U2 = C

V 2 = b

I

I

RWE



Elasticity Theory

I Consider the symmetric, positive definite, linear transformations U, V such that

U2 = C

V 2 = b

I It can be shown that (polar decomposition of F )

F = RU = VR

for some unique orthogonal transform
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and
U = RTVR
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Elasticity Theory

I Consider the symmetric, positive definite, linear transformations U, V such that

U2 = C

V 2 = b

I It can be shown that (polar decomposition of F )

F = RU = VR

for some unique orthogonal transform

R : TXB → TxS

and
U = RTVR

I The Strain tensor is given by

E : TB → TB

E =
1

2
[C − Id ]

RWE



The problem

To propose a Riemannian wavefield propagation theory which
accounts for general symmetries of the medium and to propose
decoupled solutions of the general Riemannian wavefield equation
which can be applied in migration algorithms, in particular to one
way wave equation (OWWE) algorithms. The existing theory has
not reseached a point in which they can describe general
continuum, complex zones, and used these theorical descriptions in
migration algorithms, the theory needed is a mixture of differential
geometry, functional analysis and migration methods.
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

I Split-Step Fourier Migration (P.L. Stoffa)

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

ϕ(kx , zj , ω) = ϕ(kx , zj−1, ω)e ikzMz

ϕ(kx , z, ω) = F [ψ(x , z, ω)]

ϕ(kx , z0, ω) := Data

I Split-Step Fourier Migration (P.L. Stoffa)

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

I Split-Step Fourier Migration (P.L. Stoffa)

s(~r , z) =
2

v(~r , z)

52ϕ+ ω2s2 = 0

s(~r , z) = s0(z)+ M s(~r , z)

52ϕ+ ω2s2
0 (z)ϕ = −S(~r , z, ω)

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

I Split-Step Fourier Migration (P.L. Stoffa)

∂2

∂z2
P(kr , z, ω) + K2

z0
P(kr , z, ω) = −Ŝ(kr , z, ω)

P−(~r , zn+1, ω) = Pl (~r , zn,M z, ω)

+ iω

∫ zn+1

zn

M sPl (~r , z
′, dn+1, ω)dz ′

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)
I Split-Step Fourier Migration (P.L. Stoffa)
I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

[
∂

∂z
+ i
√

A(x , ω)

] [
∂

∂z
− i
√

A(x , ω)

]
ϕ(x , z, ω) = 0

A(x , ω) =
∂2

∂x2
+

ω2

v2(x , zj )

s(x , zj ) =
1

v(x , zj )

with the extrapolators

kz =
√
ω2s2 − k2

x

kz0 =
√
ω2s2

0 − k2
x

we get

kz = kz0

√
1−

ω2

k2
z0

(s2
0 − s2) (1)

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

I Split-Step Fourier Migration (P.L. Stoffa)

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

kz = kz0 + kz0

∞∑
n=1

(−1)n
( 1

2

n

)[( ω2s2
0

ω2s2
0 − k2

x

)(
s2

0 − s2

s2
0

)]n

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

I Split-Step Fourier Migration (P.L. Stoffa)

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

ψ(x , z+ M z, ω) = ψ(x , z, ω)e ikz0
Mze ikz0

Mz
∞∑
n=1

(−1)n
( 1

2

n

)[( ω2s2
0

ω2s2
0 − k2

x

)(
s2

0 − s2

s2
0

)]n

ψ(x , z+ M z, ω) = ψ(x , z, ω)e ikz0
Mz

{
1 +

∞∑
n=1

(−1)n
( 1

2

n

)[( ω2s2
0

ω2s2
0 − k2

x

)(
s2

0 − s2

s2
0

)]n}

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

I Split-Step Fourier Migration (P.L. Stoffa)

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

I Split-Step Fourier Migration (P.L. Stoffa)

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
For the self-adjoint operator

L = −
(

2πω

v(x , z)

)2

− Dxx − Dyy

Construct the spectral family (spectral projectors)

P =
∑

(k:λk≤0)

λkPk

PLP =
∑

(k:λk≤0)

λkPk

RWE



OWWE. Extrapolation methods

I Phase-shift (J.Gazdag)

I Split-Step Fourier Migration (P.L. Stoffa)

I High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

I Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
reformulate the problem as

p̂zz = PLP p̂
p̂(x , zn, ω) = q(x , zn, ω)

p̂z (x , zn, ω) = qz (x , zn, ω)

RWE



Riemannian wavefield extrapolation, finite difference approach

I Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
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Riemannian wavefield extrapolation, finite difference approach

I Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
Consider the monochromatic wave equation for an acoustic wavefield

52
ξU = −ω2s2

ξU ,where

52
ξU =

1√
|g |

∂

∂ξi

(√
|g |g ij ∂U

∂ξj

)

RWE



Riemannian wavefield extrapolation, finite difference approach

I Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
This equation can be written as

nj
∂U
∂ξj

+ mij ∂2U
∂ξi∂ξj

= −
√
|g |ω2s2

ξU

where
nj , mij depend on the metric.

RWE



Riemannian wavefield extrapolation, finite difference approach

I Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
Fourier transforming ξν ↔ kν

(mijkξi − inj )kξj =
√
|g |ω2s2

ξ ,

Solving for kξ3
leads to

kξ3
= −a1kξ1

−a2kξ2
+ia3±[a2

4ω
2−a2

5k
2
ξ1
−a2

6k
2
ξ2
−a7kξ1

kξ2
+ia8kξ1

+ia9kξ2
−a2

10]1/2

and then extrapolate

U(ξ3+ M ξ3, kξ1
, kξ2

, ω) = U(ξ3, kξ1
, kξ2

, ω)e ikξ3
Mξ3

Some extrapolators

RWE



Riemannian wavefield extrapolation, finite difference approach

I Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
2D nonorthogonal coordinate system.

kξ3
= −a1kξ1

+ ia3 ± [a2
4ω

2 − a2
5k

2
ξ1

+ ia8kξ1
− a2

10]1/2

RWE



Riemannian wavefield extrapolation, finite difference approach

I Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
2D orthogonal coordinate system.

kξ3
= ia3 ± [a2

4ω
2 − a2

5k
2
ξ1

+ ia8kξ1
− a2

10]1/2

RWE



Riemannian wavefield extrapolation, finite difference approach

I Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
3D semiorthogonal coordinate system.

kξ3
= ia3 ± [a2

4ω
2 − a2

5k
2
ξ1
− a2

6k
2
ξ2
− a7kξ1

kξ2
+ ia8kξ1

+ ia9kξ2
− a2

10]1/2

RWE



Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

I Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
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Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

I Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

RWE



Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

I Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

[
52
ξ −

1

ν2
ξ

∂2

∂t2

]
Uξ = Fξ

52
ξ =

1√
|g |

∂

∂ξi

(
g ij
√
|g |
) ∂

∂ξj
+ g ij ∂2

∂ξi∂ξj

52
ξ = ζ i

∂

∂ξi
+ g ij ∂2

∂ξi∂ξj

RWE



Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

I Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
Then, we have

ζ i
∂Uξ

∂ξi
+ g ij ∂

2Uξ

∂ξi∂ξj
=

1

ν2
ξ

∂2Uξ

∂t2
+ Fξ

RWE



Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

I Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
For a 2D scheme, we have

∂2Uξ

∂t2
= ν2

[
ζ1 ∂Uξ

∂ξ1
+ ζ2 ∂Uξ

∂ξ2
+ g11 ∂

2Uξ

∂ξ2
1

+ 2g12 ∂2Uξ

∂ξ1∂ξ2
+ g22 ∂

2Uξ

∂ξ2

]

RWE



Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

I Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
Take the following FD scheme

∂2U

∂t2
=

Un+1
v,k − 2Un

v,k + Un−1
v,k

(∆t)2

∂U

∂ξ1
=

Un
v+1,k − Un

v−1,k

2∆ξ1

∂U

∂ξ1∂ξ2
=

Un
v+1,k+1 − Un

v−1,k+1 − Un
v+1,k−1 + Un

v−1,k−1

2∆ξ1∆ξ2

∂2U

∂ξ2
1

=
Un
v+1,k − 2Un

v,k + Un
v−1,k

(∆ξ2
1)

∂2U

∂ξ2
2

=
Un
v,k+1 − 2Un

v,k + Un
v,k−1

(∆ξ2
2)

where

ξ1 = v∆ξ1

ξ2 = k∆ξ2

t = n∆t

Un
v,k = U(ξ1, ξ2, t)
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Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

I Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
So we obtain the following discrete equation

Un
v,k = 2Un

v,k − Un−1
v,k + (ν∆t)2[ζ1

(
Un
v+1,k − Un

v−1,k

2∆ξ1

)

+ ζ2

(
Un
v,k+1 − Un

v,k−1

2∆ξ2

)

+ g11

(
Un
v+1,k − 2Un

v,k + Un
v−1,k

(∆ξ1)2

)

+ g22

(
Un
v,k+1 − 2Un

v,k + Un
v,k−1

(∆ξ2)2

)

+ g12

(
Un
v+1,k+1 − Un

v−1,k+1 + Un
v+1,k−1 + Un

v−1,k−1

2∆ξ1∆ξ2

)
]
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On Elastic Wave equation

I

I

I

I
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On Elastic Wave equation

If we want to have an elastic two-way equation

I

I

I

I
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On Elastic Wave equation

Tikuk,33 − iω(Rik + Rki )− ω2Qikuk + ρω2ui = 0,

where

I

I

I

I

RWE



On Elastic Wave equation

Tik = Ci3k3

Rik = Ci1k3s1 + Ci2k3s2

Qik = Ci1k1s
2
1 + (Ci1k2 + Ci2k1)s1s2 + Ci2k2s

2
2 .

I

I

I

I
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On Elastic Wave equation

Note that in matrix notation, we have

T
d2~u

dz2
− iω(R + RT )

d~u

dz
− ω2(Q − ρI )~u = 0.

I

I

I

I
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On Elastic Wave equation

I Gluing together the momentum and constitutive equations, we have

d~b

dz
= iωA~b

where

I

I

I
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On Elastic Wave equation

I

~b =

(
~u
~τ

)
; ~τ = −

1

iω

 σ13

σ23

σ33

 ,

and

I

I

I
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On Elastic Wave equation

I

A = −
(

T−1RT T−1

RT−1RT − Q + ρI RT−1

)
.

I

I

I
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On Elastic Wave equation

I

I Matrix A can be decomposed as

D−1AD = Λ = diag(qUp qUs1 qUs2 qDp qDs1 qDs2),

I

I
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On Elastic Wave equation

I

I

I For a vertically homogeneous layer, we have ~b = D~v and the system reduces to

d~v

dz
= iωΛ~v ,

whose solution has the form

I
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On Elastic Wave equation

I

I

I

I
~v(z) = e iωΛ(z−z0)~v(z0).

Since ~v = D−1~b, which means that D−1 is a decomposition operator, we have

~bi (z) = Die
iωΛi (z−z0)D−1

i
~bi (z0), (1)
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An example

I

I

I

I
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An example

I For small motions of B, we have

Φi
t(X ) = x i + ui (X , t)

where u =
∑

ui (X , t)∂i is the displacement vector field.

I

I

I
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An example

I

I The strain tensor εij is given by

εijdx
i ⊗ dx j =

1

2

[
∗ds(X )2 − ds(X )2

]
, then

εkl =
1

2
(gkm∂lu

m + gml∂ku
m + um∂mgkl )

εkl =
1

2
(gkm 5l u

m + gml 5k um)

I

I
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An example

I

I

I Since

σij√
|g |

= Cijklεkl

df i =
σij√
|g |

dSj

we have, for an elastic and homogeneous body, the equation of motion given by:∫
V
ρ∂ttu

idV = −
∫
S

σij√
|g |

dSj

=

∫
V
5j

(
σij√
|g |

)
dV .

I
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An example

I

I

I

I Then we have a elastic wave equation as

ρ∂ttu
i =

1

2
5j Cijkl (gkm 5l u

m + gml 5k um)

=
1

2
Cijkl

(
gkm 5j 5lu

m + gml 5j 5ku
m
)
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Objectives

I To design Riemannian coordinate systems that conform with the Euclidean ones
in which a wavefield is to be extrapolated and propagate an acoustic
Riemannian wavefield.

I To formulate the theory of elastic wave propagation in Riemannian manifolds
which include the anisotropy parameters and the simmetries of the media.

I To obtain the decoupling of the solutions to the Riemannian wave equation in
terms of pseudodifferential operators and/or Fourier integral operators.

I To show that the decoupling operators can be reduced to the propagation
operators used in one way wave equation extrapolation such as GPSPI, NSPS
and GPS.
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