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Introduction
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The earth is at least a visco elastic medium, in which absorption losses give rise
to attenuation and dispersion effects.

The elastic wave equation is framed in terms of tensor operators acting on
vector quantities.

...It Is also true that a proper treatment of anisotropy fundamentally demands an
elastic viewpoint, even when only P-waves (quasi-P waves) are contemplated.

....different representations for the same physical law can lead to different
computational techniques in solving the same problem, which can produce
different and new numerical results, so this new but accurate representation
should lead us to new results and descriptions of the phenomena.
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Wave Propagation in Continuum Media

» Hook's law

ojj = E Cijki €kl
K1

where
oij is the strain tensor,
Ciji + s the stiffnes tensor,
€, . is the stress tensor.
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Wave Propagation in Continuum Media

> Hook's law

» Cauchy’s equations of motion
From the balance of momentum one gets

_ 0%, 0
PX) 5 = ZJ: pod

For an Isotropic media
ojj = )\5,’1‘ Z €k + 2,U,E,'j
k
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Wave Propagation in Continuum Media

» Hook's law

» Cauchy’s equations of motion
From the balance of momentum one gets

_, 0%, 0
PX) 5 = ZJ: podl

then
L 0% . 5
PR 55 = A+ WIV( - D] +p v d

RWE



Wave Propagation in Continuum Media

» Hook's law

» Cauchy’s equations of motion
From the balance of momentum one gets

_ 02i; 1o}
PR 5a = XJ) a7

In general curvilinear coordinates
V= v(v-0) = v x (v xd)

and defining
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Wave Propagation in Continuum Media

» Hook's law

» Cauchy's equations of motion
From the balance of momentum one gets

02

PG =2 g%

we get

L 0%
p(X)@:(/\+2u)Vsa—uv X1
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» Hook's law
» Cauchy’s equations of motion
» Wave equation for P-waves in homogeneous and isotropic media
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Hook's law
Cauchy’s equations of motion

Wave equation for P-waves in homogeneous and isotropic media
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Wave equation for S-waves in homogeneous and isotropic media

where
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Consider the IVP

1 82
2LT - u

Vi g T 0
4(x,0) = (X
o s
5“20 = n(x)
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On Wave equation

> In one dimension (1-D)

u(x,t) = % Y(x + vt) + v(x — vt) + é i+:f n(s)ds]
where
1) = f(x)+&x)
n(x) = vIf'(x)+g'(x)]

for some f, g € C2(Q)
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On Wave equation

> In one dimension (1-D)

> In two dimensions (2-D)

o d Jam (51, %) 51 ds
qxt) = dt [ v //;)(F,vt) Vvt =[(s1 — x1)2 + (52 — %) o

4n? n(s1, 52) ds: o
T //D()?,vt) V)2 = (st — x1)2 + (52 — x2)?] e
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»> A configuration on B is a smooth, orientation preserving and invertible mapping
SB[

The set of all configurations of B is denoted C

» A motion of B is a curve on C

t— P, eC
> We denote motions as ®(X, t), where X € Band x = ®(X) € S
>
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Elasticity Theory

v

A configuration on B is a smooth, orientation preserving and invertible mapping
P:B— [

The set of all configurations of B is denoted C

» A motion of B is a curve on C

t— P €C
> We denote motions as ®(X, t), where X € Band x = ®(X) € S
» The material velocity and acelerations are defined as (for X fixed)
Ve(X) = o (X, t)
t = 5 )
A = Dvix)
t - 8t t
>
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Elasticity Theory
» A configuration on B is a smooth, orientation preserving and invertible mapping
SB[

The set of all configurations of B is denoted C

» A motion of B is a curve on C

t%@tec

v

We denote motions as ®(X, t), where X € B and x = ®(X) € S

The material velocity and acelerations are defined as (for X fixed)

v

0
—®(X
0%, 1)
9

— WVi(X
5 V(X

Ve (X)

Ae(X)

> The spatial velocity and acelerations are defined as (for t fixed)

vi = Viod 1
ar = Ato¢*1
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Elasticity Theory

» The deformation gradient, is given by

F:TB — TS
F(X,W) = (&(X),Do(x)- W)
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Elasticity Theory

v
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The right Cauchy-Green tensor is given by

C: TxB — TxB
c(X, W) (X, D&(X)T DH(X) - W)

Xy = FIX)FX)

some properties of C

1.
2.
3.

C is Symmetric

C is semi-positive definite

If every F is one-to one, then C is positive definite and
invertible.



Elasticity Theory

v
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The right Cauchy-Green tensor is given by

C: TxB — TxB
c(X,w) (x, D&(X)T DB(X) - W)

cX) = FI(X)FX)

The left Cauchy-Green tensor is given by

b: Tx®(B) — Txd(B)
b(x) = F(X)FT(X)



Elasticity Theory

v

The right Cauchy-Green tensor is given by
C:TxB — TxB
cX,w) = (x7 D&(X)T DB(X) - W)
C(X) = FI(X)F(X)

v

The left Cauchy-Green tensor is given by
b: Tx®d(B) — T«P(B)
b(x) = F(X)FT(X)

» some properties of b

1. bis Symmetric
2. b is positive definite
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» Consider the symmetric, positive definite, linear transformations U, V such that

v = ¢
v: = b
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Elasticity Theory

» Consider the symmetric, positive definite, linear transformations U, V such that

v = C
v: = b

> |t can be shown that (polar decomposition of F)
F=RU=VR
for some unique orthogonal transform
R: TxB— TS

and
U=RTVR

» The Strain tensor is given by

E:TB — TB
1
E —[C—Id
S1C 1]
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The problem

To propose a Riemannian wavefield propagation theory which
accounts for general symmetries of the medium and to propose
decoupled solutions of the general Riemannian wavefield equation
which can be applied in migration algorithms, in particular to one
way wave equation (OWWE) algorithms. The existing theory has
not reseached a point in which they can describe general
continuum, complex zones, and used these theorical descriptions in
migration algorithms, the theory needed is a mixture of differential
geometry, functional analysis and migration methods.
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> Phase-shift (J.Gazdag)
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OWWE. Extrapolation methods

> Phase-shift (J.Gazdag)

ks, zj,w) = w(kx7zj717w)eszAZ
plke, z,w) = Flo(x,z,w)]
p(kx,z0,w) = Data
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OWWE. Extrapolation methods

> Phase-shift (J.Gazdag)
> Split-Step Fourier Migration (P.L. Stoffa)

- 2
N )
PRo+uwis? = 0
s(F,z) = so(2)+ A s(F,z2)
Vo+wPsg(2)e = —S(Fz,w)
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OWWE. Extrapolation methods

> Phase-shift (J.Gazdag)
> Split-Step Fourier Migration (P.L. Stoffa)

o2
@P(khz7w) + KZZOP(kNva)

P_(F,zn41,w) =

RWE

_S(khz?w)
P/(F:ZH:A va)

. Zn+1 , ,
lw/ A sPy(F, 2, dpy1, w)dz
Z

n



OWWE. Extrapolation methods

> Phase-shift (J.Gazdag)
> Split-Step Fourier Migration (P.L. Stoffa)
»> High Order Generalized Screen Propagator (C. Sheng, MA.Zai)
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OWWE. Extrapolation methods

> Phase-shift (J.Gazdag)
» Split-Step Fourier Migration (P.L. Stoffa)
»> High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

%—&-i\/W} [%—i\/m p(x,zw) = 0

2 2
Alx,w) = % + #,zj)
1
stoz) = v(x, zj)
with the extrapolators
b - Joroa
kyy = w?s? — k2
we get
ke = ko [1— ZJ; (s2 — s2) (1)
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OWWE. Extrapolation methods

> Phase-shift (J.Gazdag)
> Split-Step Fourier Migration (P.L. Stoffa)
»> High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

s n% w2s§ 55—52 "
ot () [(2235) (552)]
n=1 X
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OWWE. Extrapolation methods

> Phase-shift (J.Gazdag)

> Split-Step Fourier Migration (P.L. Stoffa)
»> High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

RWE

Y(x,z+ A z,w)

Y(x,z+ A z,w)

e}

W(x, z, w)eikZU 07 gikzy 02 Z(*l)n<

n=1

(x, z,w)e 0t {1 + 2(*”"(%) K

3 NI=

) {( w2s§
w2s? — k2

X

22
w sy

252 _ 2
w?sg — k2



OWWE. Extrapolation methods

Phase-shift (J.Gazdag)

Split-Step Fourier Migration (P.L. Stoffa)

High Order Generalized Screen Propagator (C. Sheng, MA.Zai)
Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
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OWWE. Extrapolation methods

> Phase-shift (J.Gazdag)

» Split-Step Fourier Migration (P.L. Stoffa)

»> High Order Generalized Screen Propagator (C. Sheng, MA.Zai)
>

Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
For the self-adjoint operator

21w \?
L=— — Dy — D,
(i)~

Construct the spectral family (spectral projectors)

73 = Z >\kPk
(k:x(<0)

PLP = > MNP
(k:X(<0)
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OWWE. Extrapolation methods
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Phase-shift (J.Gazdag)
Split-Step Fourier Migration (P.L. Stoffa)
High Order Generalized Screen Propagator (C. Sheng, MA .Zai)

Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)
reformulate the problem as

ﬁzz = ,P[:/Pﬁ
ﬁ(x,zn,w) = q(X7 vaw)
Bz(x,zn,w) = qz(x,2n,w)
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Riemannian wavefield extrapolation, finite difference approach

» Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
Consider the monochromatic wave equation for an acoustic wavefield

v%lxl = 7w25521/l, where
1 o = oU
2 i
viu = =2 (\/|g|gf—)
¢ Vgl % 0%
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Riemannian wavefield extrapolation, finite difference approach

> Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
This equation can be written as

2
g U
9¢; 0&;0¢;

—Vlelw?stu

where ) -
', mY depend on the metric.
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Riemannian wavefield extrapolation, finite difference approach

> Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
Fourier transforming £, <> ky

(m"jkgi - inj)kgj = \/@w2s§,
Solving for ke, leads to
ke, = —arke, —arke, +iazE[ajw® —a k§1 —a? kg2 —arke, ke, +iagke, +iagke, —a2,y]t/?
and then extrapolate
U(Es+ A &3, ke, keyw) = U(Es, ke, key, w)e™ 634

Some extrapolators
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Riemannian wavefield extrapolation, finite difference approach

> Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
2D nonorthogonal coordinate system.

ke, = —arke, + ias & [a§w?® — agkgl + iagke, — a%]'/?
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Riemannian wavefield extrapolation, finite difference approach

> Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
2D orthogonal coordinate system.

ke, = ias + [ajw? — a2kZ, + iaghe, — afg]'/?
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Riemannian wavefield extrapolation, finite difference approach

»> Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)
3D semiorthogonal coordinate system.

ke, = ia3 + [a30” — a3kE, — agkZ, — arke ke, + iagke, + iaoke, — a%]'/?
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Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

> Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
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Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

» Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

, 1 82
|:v51/§8t2 U = F

5 1 0 i 0 i 5

vi = ———(&"Vlgl) == +¢g

¢ Vm%( ‘D% 0€,0¢;
] .92

2 = i

Ve ¢ 3 +e 0 0¢;
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Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

» Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

Then, we have
i OUe i 82U5 1 82U€

¢ E; o¢:0¢; v or

+ Fe
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Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

» Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
For a 2D scheme, we have

02 Ug 2|1k 9Ug TS 1 8U€ BZU»S 1 2g2 0%Ug 20%Ug
ot? 961 9& 03 96106 o¢?
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Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

» Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
Take the following FD scheme

VR e I e
a2 (At)?
U _ Ui — Uik
0&1 2A&
ou _ Uitk = Ui = Uik T U1 g
061062 2A61 A8
otu  Upy =207+ U
ol (Ag3)
U _ Ul ir =200 U7 4
083 (A83)
where
&S = vAG
& = kA&
t = nAt
vk = U6, &,t)
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Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

» Finite Difference Scheme for the Riemannanian 2D acoustic wave equation
So we obtain the following discrete equation

un —yr
n n—1 211 v+1,k v—1,k
207 — Uv,k + (vAt)7[¢ <2A£1>
+ e U kir = Ul
2A&;

v+1,k 2ka+ U 1,k>

n
v,k

< (86)?

v,k+1 2ka+ka1

" ( &) )
=

n n
vkt — Wtk T U1 le,k1>]

206 AL
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On Elastic Wave equation

If we want to have an elastic two-way equation

>

>
>
>
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On Elastic Wave equation

Tikuk,33 — iw(Ric + Rii) — w? Quetk + pw?u; = 0,

where

vVvyy
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On Elastic Wave equation

T = G
Rk = GCksst + Ciussz

2 2
Qik = GCiunsi + (Ciike + Ciok1)s152 + Ciakos -

vvyyvyy
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On Elastic Wave equation

Note that in matrix notation, we have

d?i T
TE —iw(R+R")

vvyyvyy

RWE

da _ W(Q—phid=o0.
dz



On Elastic Wave equation

» Gluing together the momentum and constitutive equations, we have

% = iwAb
where
>
>
>
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On Elastic Wave equation

| 2
o I . 1 713
b= - |y T=——| o023
T 1w
033
and
| 2
| 2
| 2
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On Elastic Wave equation

T—IRT T-1
A:_( RT-IRT —Q+pl RT-! )

v
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On Elastic Wave equation

>

» Matrix A can be decomposed as

D™'AD = A = diag(qy a9 a% qf aB ¢3),
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On Elastic Wave equation

>
>

» For a vertically homogeneous layer, we have b= DV and the system reduces to

dv

— = iwAV,
dz

whose solution has the form

RWE



On Elastic Wave equation

V(z) = “Ne=2) 7( 7).

Since V = D*IB, which means that D~1 is a decomposition operator, we have

Bi(z) = Die“ME=2) D15 (z,), (1)
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An example

» For small motions of B, we have
PI(X) =x"+u(X,1)

where u = Z u'(X, t)8; is the displacement vector field.

v
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An example

>

» The strain tensor ¢;; is given by
gjdx' @ dx) = 1 [xds(X)? — ds(X)?]
v T2

, then 1
Chl =5 (8kmO1u™ + gmiOku™ + U™ Omgi)

1
W= (gkm 71 U™ + gmi 7k U™)

RWE



An example

| 2
| 2
» Since
o
—~ = Cjeu
Vgl
. o
dff = L dS;
Viel
we have, for an elastic and homogeneous body, the equation of motion given by:
. o
pattu’dV = — dS
/v sVl
= / v ( %4 ) dv
= J
v Vel
>
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An example

>

>

» Then we have a elastic wave equation as
i 1 m m
PO’ = 5 Vi Cijkt (8km 71 U™ + gmi 7k U™)

1 m m
5 Cija (8km Vj V1u™ + &mi 7j Viu™)
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Objectives

To obtain an elastic Riemannian wave equation theory and its solutions, or
approximate solutions, which describe the elastic wave propagation in general medium,
taking into account the anisotropy parameters, the symmetry of the medium, yielding
to a decoupling that can be applied in migration algorithms.
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Objectives

» To design Riemannian coordinate systems that conform with the Euclidean ones
in which a wavefield is to be extrapolated and propagate an acoustic
Riemannian wavefield.
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Objectives

» To design Riemannian coordinate systems that conform with the Euclidean ones
in which a wavefield is to be extrapolated and propagate an acoustic
Riemannian wavefield.

» To formulate the theory of elastic wave propagation in Riemannian manifolds
which include the anisotropy parameters and the simmetries of the media.

» To obtain the decoupling of the solutions to the Riemannian wave equation in
terms of pseudodifferential operators and/or Fourier integral operators.

» To show that the decoupling operators can be reduced to the propagation
operators used in one way wave equation extrapolation such as GPSPI, NSPS
and GPS.
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